
A Polynomial Time Algorithm for 3SAT

Robert Quigley

October 3, 2024

Abstract

This paper presents a polynomial time algorithm for 3SAT using
the idea of Implication which allows for the derivation of contradicting
1-terminal clauses iff the instance is unsatisfiable. The idea is that
any two clauses which contain the same terminal which is positive in
one clause and negated in the other can imply a new clause which
consists of all the terms in either clause except for the opposite form
terms. Two 1-terminal clauses which contain opposite form terms are
called contradicting 1-terminal clauses and their existence implies the
instance is unsatisfiable.

Introduction

This paper presents and explains a polynomial time algorithm for 3SAT. In
order to convey the ideas in their entirety, it first presents some concepts and
definitions to familiarize the reader with an appropriate way of thinking. It
then continues to explore helpful ideas about 3SAT before finally presenting
and explaining the algorithm. It presents definitions as they naturally arise as
to not front load the reader with an excessive amount of information without
any context. This paper is written for those with an understanding of 3SAT
or at least variables, logic, algorithms, and time complexities.

Importance and Implications

In short, Karp points out that the existence of a polynomial time algorithm
for 3SAT implies P = NP. In [1], Karp defines the class P, the class NP, and

1



the problem 3SAT. The class P refers to “the class of languages recognizable
in polynomial time by one-tape deterministic Turing machines.” The class
NP refers to “the class of languages recognizable in polynomial time by one-
tape nondeterministic Turing machines.”

In other words, P refers to the class of problems whose algorithms have
time complexities which are polynomial with respect to the length of the
input. NP refers to the class of problems whose solutions are polynomial
with respect to the length of the input. However, the search for the solution
(done by the algorithm) could take up to exponential time. This is the
question of P vs NP: for each problem in NP, does there exist an algorithm
which produces a solution in polynomial time?

Regarding 3SAT, Karp introduces the SATISFIABILITY problem and
shows how

P = NP ⇐⇒ SATISFIABILITY ∈ P.
Karp goes on to show other problems that can play the role of SATIS-

FIABILITY in the two way implication above. He calls them “complete”.
These problems are now more commonly referred to as “NP-complete”. The
problem 3SAT is NP-complete. Karp defines 3SAT as follows:

SATISFIABILITYWITH ATMOST 3 LITERALS PER CLAUSE

INPUT: Clauses D1, D2, ..., Dr, each consisting of at most 3 lit-
erals from the set {u1, u2, ..., um} ∪ {ū1, ū2, ..., ūm}
PROPERTY: The set {D1, D2, ..., Dr} is satisfiable.

In an earlier definition of SATISFIABILITY, Karp uses the following
property to define a set of clauses being satisfiable:

PROPERTY: The conjunction of the given clauses is satisfiable;
i.e., there is a set S ⊂ [{u1, u2, ..., un, ū1, ū2, ..., ūm}] such that

a) S does not contain a complementary pair of literals and

b) S ∩ [Dk] ̸= ϕ, k = 1, 2, ..., [r]

This is to say that there is a set, S, which is a subset of literals and their
complements in which S does not contain both a literal and its complement
and every clause contains at least one literal which exists in S.

It has been helpful to think of this problem slightly differently. When
constructing the set, S, if S contains a literal from the set {u1, u2, ..., um},

2



we can think of that literal being assigned the value of True. And if S
contains a literal from the set {ū1, ū2, ..., ūm}, we can think of that literal
being assigned the value of False.

Thinking of literals as boolean variables (called terminals), we can think
of a clause as containing three terminals combined by logical OR operators.
Similarly, we can think of an instance of 3SAT as a set of clauses combined
by logical AND operators. The question of the existence of S is now the
question of the existence of a value (True or False) for each terminal such
that the instance evaluates to True.

Instead of a strict translation from the word “literals”, this paper uses the
following vocabulary to refer to a literal depending on context: The literals
in the set {u1, u2, ..., um} will be referred to as terminals when discussing the
number of terminals in an instance or when assigning them a value (True or
False). When discussing literals existing in a clause before a concrete value
is known, we refer to literals in the set {u1, u2, ..., um} as positive terms and
the literals in the set {ū1, ū2, ..., ūm} as negative terms.

The problem of 3SAT is to determine whether the property holds true for
any given instance. As stated above, a polynomial time algorithm for 3SAT
implies P = NP.

Reiteration and Terminology

This section aims to reiterate the problem of 3SAT as well as introduce some
terminology and notation used in this paper.

An instance of 3SAT consists of a set of clauses combined by logical AND
operators.

A clause is a set of exactly three unique terminals combined by logical OR
operators. Each terminal may also have the logical NOT operator applied to
it.

A terminal is a variable whose value could be assigned to True or False.
When discussing terminals existing in a clause before a concrete value

is known, we refer to terminals as positive terms and their complements as
negative terms. We may also refer to a clause as containing a certain number
of terms, considering both positive and negative terms.

An assignment is a set of values assigned to each terminal.
An instance is said to be satisfiable if there exists an assignment such

that the instance evaluates to True. We call this the satisfying assignment.

3



An instance is said to be unsatisfiable if there does not exist an assignment
which allows the instance to evaluate to True.

The notation used to represent clauses in the paper is as follows:
1. clauses are surrounded by a single pair of square brackets
2. terms are written as letters, separated by commas
3. negative terms are prepended with a minus sign
4. when clauses are named, they are generally named using a minimal

number of capital letters
Some example clauses follow:
A := [a, b, c]
B := [a, b,−c]
where A is a clause which contains the terms a, b, and c and B is a clause

which contains the terms a, b, and the complement of c.
Important Note: Often this paper presents example clauses and points out

the positive or negative terms in those clauses. This is always done without
loss of generality as it is not strictly referring to a positive or negative term
in the absolute sense. The only important aspect about positive or negative
terms is how they behave when considering the same terminal in two different
forms. For example, a clause presented as

A := [a,−b, c]
could represent a clause with any three terms in either form. The positive

or negative nature of a, b, and c are only important when considering another
clause containing the same term and whether that term’s form is the same
or opposite.

An Exploration of Ideas

This section presents ideas whose combined value is critical for proving the
polynomial time nature of the algorithm presented later in this paper.

Blocking an assignment

Claim: A clause, C, is said to block an assignment, A, if the presence of C
in the instance prevents A from being the satisfying assignment.

Proof. Recall all clauses within an instance are combined by logical AND
operators.

4



Therefore all clauses within an instance must evaluate to True for the
instance to evaluate to True.

Recall all terms within a clause are combined by logical OR operators.
Therefore at least one term in a clause must be True in order for the

clause to evaluate to True.
If all terms in a clause are False, the clause evaluates to False.
If any clause is False, the instance evaluates to False.
Any assignment which sets all the terms in a clause to False will therefore

never be the satisfying assignment. We say this assignment is blocked by the
clause whose terms are all set to False.

The number of possible assignments

Claim: For a given instance with n terminals, there are 2n possible assign-
ments.

Proof. Recall each terminal has two options for its value: True or False.
Because there are two options for each terminal and there are n terminals

in a given instance, there are 2n possible assignments for that given instance.

The number of assignments blocked per clause

Claim: In an assignment with n terminals, each clause of length k blocks
2n−k assignments.

Disclaimer: In an instance of 3SAT, the given clauses all contain exactly
three terms, but it is useful in later proofs to consider clauses with a fixed,
yet arbitrary length, k.

Proof. Recall an assignment is blocked by a clause if that assignment assigns
False to all the terms in that clause.

Considering assignments blocked by a clause of length k, all of these
assignments fix the values for the k terminals in this clause.

The remaining n− k terminals have two options: True or False.
Recall an assignment exists for all the ways to assign True or False to all

the terminals in an instance.
Therefore there exists one blocked assignment for each possible combina-

tion of True or False assigned to the remaining n− k terminals.
This results in 2n−k assignments being blocked by a clause of length k.

5



Assignments blocked by fixing a terminal’s value

Claim: For any clause, C, if we select a terminal, t, that’s not in C, then
half of the assignments blocked by C will assign True to t and the other half
will assign False to t.

Proof. Let the clause and term be defined as follows:
C := [a, b, c, ...]
in which C is a clause of length k, and t is a terminal which does not

exist in C.
We want to show that half of the assignments blocked by C assign True

to t and the other half assign False to t.
Let’s fix the value of t to True.
Considering the assignments blocked by C which assign True to t, it is

seen these assignments fix the value of k+1 terms and allow for the remaining
n− k − 1 terminals to be True or False.

This means there are 2n−k assignments blocked by C and there are 2n−k−1

assignments blocked by C which assign True to t.
It is seen that half of the assignments blocked by C assign True to t.
Similarly, it can be seen that half of the assignments blocked by C assign

False to t.
Since t cannot be assigned both True and False, these sets are disjoint.
Therefore, half of the assignments blocked by C assign True to t and the

other half assign False to t.

Reduction

Claim: Two clauses which are identical except for one term, i, which is
positive in one clause and negative in the other, imply another clause which
is composed of all of the terms in the original clauses except for i and −i.

Definition: A clause or set of clauses is said to imply another clause if the
latter clause can be added to the instance without blocking any additional
assignments.

Definition: We say the first two clauses reduce to the third clause. Some-
times the first two clauses are referred to as inputs of the implication and
the third clause is referred to as the output of the implication.

Definition: The term which is positive in one clause and negative in the
other is sometimes referred to as the popped term or as an opposite form
term.

6



Proof. Let the clauses be defined as follows:
A := [a, b, c, ..., i]
B := [a, b, c, ...,−i]
C := [a, b, c, ...]
where A,B, and C share the identical set of terms, a, b, c, ... and i is

positive in A and negative in B.
We want to show that A and B imply C.
Recall that if we take a terminal that’s not in a clause, then half of the

assignments blocked by that clause assign True to that terminal and the
other half assign False to that terminal.

Consider the clause, C, and the terminal, i, which is not in C.
Half of the assignments blocked by C assign True to i and the other half

assign False to i.
The assignments blocked by C which assign False to i are blocked by A.
The assignments blocked by C which assign True to i are blocked by B.
Notice A and B block both halves of the assignments blocked by C.
In other words, A and B block all of the assignments blocked by C and

it can be said that A and B imply C.

Expansion

Claim: A clause, C, expands to a clause, D, if all the terms in C exist in D
and there is at least one term in D which is not in C.

Definition: We say C expands to D. It may be said that C implies D.
Definition: Any terms in D which are not in C are called expanded terms.

Proof. Let the clauses be defined as follows:
C := [a, b, c, ...]
D := [a, b, c, ..., d, e, f, ...]
where a, b, c, ... exist in both C and D and d, e, f, ... exist only in D.
We want to show that C implies D.
Recall a clause blocks assignments which assign False to all terms in that

clause.
Recall also that the blocked assignments assign every possible combina-

tion of True and False to every terminal that is not in the clause.
Consider the assignments blocked by C.
C blocks assignments where a, b, c, ... are all False.

7



Additionally, there exists a blocked assignment for each possible combi-
nation of True and False for every terminal that is not in C.

Specifically, there exists assignments which set a, b, c, ..., d, e, f, ... to False
as well as every possible combination of True or False for the remaining terms.

Notice these are exactly the assignments blocked by D.
Therefore all of the assignments blocked by D are blocked by C.
It can be said that C implies D.

Implication

Claim: Two clauses which contain the same term which is positive in one
clause and negative in the other imply a third clause which consists of all the
terms in the first two clauses except for the opposite form terms.

Proof. Let the clauses be defined as follows:
A := [a, b, c, ..., i]
B := [d, e, f, ...,−i]
C := [a, b, c, ..., d, e, f, ...]
where i and −i are the opposite form terms and C consists of the terms

in A and B except for the opposite form terms.
We want to show A and B imply C.
Recall we can imply a new clause using expansion by appending terms to

an existing clause.
With this method, we can derive the following clauses:
A′ := [a, b, c, ..., d, e, f, ..., i]
B′ := [a, b, c, ..., d, e, f, ...,−i]
where A expands to A′ and B expands to B′.
Now using reduction, it is seen that A′ and B′ imply C.
Since A expands to A′ and B expands to B′ and together A′ and B′ imply

C, it can be said that A and B imply C.

Contradicting clauses imply unsatisfiability

Claim: Contradicting 1- or 2-terminal clauses imply the instance is unsatis-
fiable.

Definition: A k-terminal clause is a clause which contains k terms.
Definition: Contradicting clauses are sets of clauses in which each clause

consists of the same terms and there exists a clause for each combination

8



of positive or negative forms of these terms. For example, [−a] and [a] are
contradicting 1-terminal clauses and [a, b], [a,−b], [−a, b], and [−a,−b] are
contradicting 2-terminal clauses. Larger sets of contradicting clauses provide
no use for the purposes of this paper.

Proof. First, we want to show contradicting 1-terminal clauses imply the
instance is unsatisfiable.

Consider a 1-terminal clause containing the positive form of a terminal
and another 1-terminal clause containing the negative form of that same
terminal.

Recall a terminal can only be assigned one value, either True or False.
If the clause with the positive term is True, then the clause with the

negative term is False and the instance is unsatisfiable.
If the clause with the negative term is True, then the clause with the

positive term False and the instance is unsatisfiable.
Therefore contradicting 1-terminal clauses imply unsatisfiability.
Now we want to show contradicting 2-terminal clauses imply contradict-

ing 1-terminal clauses.
Let the clauses be defined as follows:
A := [a, b]
B := [a,−b]
C := [−a, b]
D := [−a,−b]
where A,B,C, and D are contradicting 2-terminal clauses.
Notice we can derive the following clauses:
AB := [a]
CD := [−a]
where A and B imply AB and C and D imply CD.
These are contradicting 1-terminal clauses which have been shown to

imply the instance is unsatisfiable.
Note that this derivation will always be possible because contradicting

2-terminal clauses contain all possible combinations of the same two terms
in their positive and negative forms.

Therefore contradicting 1- and 2-terminal clauses imply the instance is
unsatisfiable.

9



Initial implication graph

Claim: If an instance is unsatisfiable, there exists an implication graph in
which the given 3-terminal clauses expand to all possible n-terminal clauses
which reduce to contradicting 1-terminal clauses.

Definition: An implication graph is a directed graph used to represent
the path from one clause’s existence to another clause’s existence via the
methods of Reduction, Expansion, or Implication. The nodes of the graph
represent clauses and the edges represent the parent node(s) implying the
child node.

Definition: This particular implication graph will be referred to as the
initial implication graph. This will be used in contrast to other implica-
tion graphs which derive the same clauses, but process different intermediate
clauses.

Definition: A given 3-terminal clause is a clause which is given as part
of the original instance of the problem.

Definition: A derived clause is a clause which has been added to the
instance to aid with further processing.

Definition: An ancestor of a clause, C, is any clause which was used in
the implication of C.

Definition: A descendant of a clause, C, is any clause whose presence
relies on an implication from C.

Proof. First, we will show that the given 3-terminal clauses can expand to
every possible n-terminal clause. Next, we will show how these n-terminal
clauses can reduce to contradicting 1-terminal clauses.

Recall an instance is unsatisfiable if there is no satisfying assignment.
This means all possible assignments are blocked.
For each blocked assignment, there exists a given 3-terminal clause which

blocks that assignment.
For each blocked assignment, consider an n-terminal clause which blocks

that assignment.
To construct the n-terminal clause, the terminals whose values are True

will exist in their negative form and the terminals whose values are False will
exist in their positive form.

In this way, each term in the clause is False and the assignment is blocked
by that clause.

10



We want to show that every n-terminal clause can be derived by expand-
ing a given 3-terminal clause.

Suppose not, then there exists an n-terminal clause to which no given
3-terminal clause can expand.

Recall all of the assignments are blocked.
Therefore there exists a given 3-terminal clause that blocks the same

assignment as this n-terminal clause.
If the given 3-terminal clause cannot expand to this n-terminal clause

(due to the fact that there are terms in the 3-terminal clause which do not
exist in the n-terminal clause), then that 3-terminal clause cannot block that
assignment.

This is a contradiction because that 3-terminal clause blocks that assign-
ment.

Therefore the given 3-terminal clauses can expand to every possible n-
terminal clause.

Now we want to show these n-terminal clauses can reduce to contradicting
1-terminal clauses.

Notice there exists an n-terminal clause containing every term for each
possible combination of positive and negative forms of these terms.

Pick a terminal in the instance and look at the clauses which contain the
positive form of that term.

Notice that for each of these clauses containing the positive form of the
term, there exists a clause which is identical in every term except it contains
the negative form of that term.

This is because each clause contains every term and there exists a clause
for each combination of either form of each term.

Using the idea of Reduction, we can pop this term and imply a clause
which contains the remaining terms.

Since the clauses before this reduction contained every possible combina-
tion of these remaining terms and we only popped this opposite form term,
all of the clauses now have every possible combination of the remaining n−1
terms in either form.

It can be seen how this pattern will continue since we will always have
every possible combination of the remaining terms at any step.

Once we get to the step which derives the 1-terminal clauses, there is only
one term that remains and it must be positive in one clause and negative in
the other.

11



Therefore the n-terminal clauses can reduce to contradicting 1-terminal
clauses.

In total, an unsatisfiable instance implies that the given 3-terminal clauses
can be expanded to n-terminal clauses which can then be reduced to contra-
dicting 1-terminal clauses.

Implication graph without expansion

Claim: The initial implication graph can be arranged in such a way as to
derive contradicting 1-terminal clauses without expansion.

Definition: The 1-terminal clauses which are derived in this implication
graph are sometimes referred to as the final output clauses of the implication
graph.

Definition: This modified implication graph will be referred to as the
expansionless implication graph.

Proof. This idea comes in two parts: First, we consider the 3-terminal to
n-terminal expansion and the resulting n-1, n-2, ... reductions. We show
how the opposite form terms in the reductions can be popped first and then
the resulting clause can be expanded as opposed to the initial implication
graph in which the clauses are expanded first and then the opposite form
terms are popped. Second, we show how the expansion in the latter step is
unnecessary to derive the final output of the implication graph.

Recall the shape of the initial implication graph: the 3-terminal clauses
expand to n-terminal clauses which reduce to contradicting 1-terminal clauses.

For each n-terminal clause, there exists at least one corresponding given
3-terminal clause which expands to that n-terminal clause.

Let the clauses be defined as follows:
A := [a, b, c]
B := [d, e, f ]
A′ := [a, b, c, ...]
B′ := [d, e, f, ...]
where A and B are given 3-terminal clauses which expand to the n-

terminal clauses, A′ and B′, respectively. Additionally, A′ and B′ reduce
to an n-1-terminal clause.

Consider the opposite form term which is popped from A′.
This term either exists in A or it does not exist in A (in the latter case,

it is one of the expanded terms which are used to derive A′).

12



If this term does not exist in A, then A can simply expand to this n-1-
terminal clause since all of the terms in A exist in this clause.

If the term does exist in A, consider its corresponding opposite form term
which exists in B′.

This term either exists in B or it does not exist in B.
If this term does not exist in B, then B can expand to this n-1-terminal

clause since all of the terms in B exist in the clause.
If the term does exist in B, then A and B can imply a new clause (since

they share an opposite form term).
This clause then expands to the n-1-terminal clause since all of the terms

in this clause exist in that n-1-terminal clause.
So we can derive the n-1-terminal clauses by delaying expansion until the

last step.
Using the principle of mathematical induction, we will show how expan-

sion can be delayed until the last step for every clause in the implication
graph.

Consider the k-terminal clause to k-1-terminal clause reduction and as-
sume we have derived the k-1-terminal clauses by delaying expansion until
the last step. Want to show we can derive the k-2-terminal clauses by delay-
ing expansion until the last step.

The k-1-terminal clauses reduce to the k-2-terminal clauses say by pop-
ping the opposite form term, a.

The path from the given 3-terminal clauses to the k-1-terminal clauses
went through zero or more implications or reductions before expanding to
the k-1-terminal clauses.

Let the clauses C and D be the clauses in that implication graph right
before the expansion and the clauses C ′ and D′ be their respective k-1-
terminal clauses right after the expansion.

The opposite form term, a, is in C ′, but it could either be in C or it could
not be in C.

If it is not in C, then C can expand to the k-2-terminal clause since all
of the terms in C exist in the k-2-terminal clause.

If it is in C, consider placement of the term −a in D′.
The term −a is in D′, but it is either in D or it is not in D.
If it is not in D, then D can expand to the k-2-terminal clause since all

of the terms in D exist in the k-2-terminal clause.
If it is in D, then C and D imply another clause, CD, (since they share

an opposite form term) and that clause can expand to the k-2-terminal clause

13



since the opposite form term is popped and all of the terms in CD exist in
that k-2-terminal clause.

Therefore we can always delay expansion until the last step in this impli-
cation graph.

Now we want to show that expansion is unnecessary when the entirety of
the graph is taken into consideration.

Recall the final output of the implication graph consists of two 1-terminal
clauses.

When working with strictly the methods of Reduction and Implication,
you will not derive a clause with a length less than 1 (if you do, you have
already derived contradicting 1-terminal clauses and have shown the instance
is unsatisfiable).

Since the output is of length 1 and the shortest clause derived is of length
1, there is no need for expansion to derive the final output clauses.

The shape of the implication graph

Claim: The expansionless implication graph can be rearranged such that it
can be thought of as a single clause, the running clause, which grows and
shrinks in size as it is used with given 3-terminal clauses to imply the next
running clause. The output of this modified implication graph consists of
contradicting 2-terminal clauses.

Definition: The running clause refers to a single clause in a series of
clauses in which each running clause can derive the next using implication
with a given 3-terminal clause. For example consider the following implica-
tions,

1. A and B imply AB
2. AB and C imply ABC
3. ABC and D imply ABCD
Here, A, B, C, and D are given 3-terminal clauses and each output is

the running clause for that step. The important aspect of a running clause
is each implication’s inputs consist of at least one given 3-terminal clause
and at most one derived clause. There will never be an implication which
consists of two derived clauses.

Disclaimer: Rather than looking at the implication graph which de-
rives contradicting 1-terminal clauses, it is more helpful to look at four dis-
tinct branches, each of which derive one of the four contradicting 2-terminal

14



clauses. Clearly the 2-terminal clause to 1-terminal clause implication re-
quires two derived clauses as inputs (because 2-terminal clauses will never
be given). To make full use of the running clause, we only concern ourselves
with a single branch which derives one of these 2-terminal clauses. The same
methods can then be repeated for the other three branches which can then
be used to imply contradicting 1-terminal clauses.

Proof. The idea is to use the fact that every term in this implication graph
exists in a given 3-terminal clause and those 3-terminal clauses can be used
directly without having to process another derived clause first.

Since no new terms are introduced by way of expansion, the only place
new terms are introduced are in the given 3-terminal clauses.

Notice, too, that every term in an output of an implication exists in at
least one of the input clauses in that implication.

If there is ever an implication between two derived clauses, say A and B
imply C, that pops some opposite form term, say a ∈ A and −a ∈ B, then
there is a given 3-terminal clause, D, which contains −a and the implication
can be done by using A and D to imply a new clause AD which does not
contain a or −a.

There are two points to notice about this new implication: (1) there may
be terms in AD which do not exist in C and (2) there may be terms in C
which do not exist in AD.

Regarding point (1), we want to show the terms in AD can be popped
in a very similar way as the terms in the implication graph for deriving B.
Any descendant of AD in this implication graph will be referred to as AD′

(and can be thought of as the running clause).
Consider the implication graph which derives B. Each clause in this

graph pops a term and introduces up to two terms.
Since D is an ancestor of B, it introduces the very same terms to AD as

it does in the implication graph of B.
Any term that is introduced to AD′ is a term that exists in the implication

graph of B and is popped just the same.
Recall the terms in the implication graph of B exist in given 3-terminal

clauses so these terms in AD′ can be popped with given 3-terminal clauses.
Notice the terms in AD′ now consist of the terms in A and at least some

of the terms in B.
All of the terms in AD′ exist in C.

15



Regarding point (2), the terms in C exist in A or B or both. Clearly the
terms in A which exist in C also exist in AD′ so now we are only concerned
with the terms in B that may not exist in AD′.

The implication graph of B pops terms that are not in B and introduces
terms that are in B.

The clauses that introduce terms which stay in B are the same clauses
which are used to pop terms from AD′.

Therefore these same terms are introduced to AD′ just as they are to B.
The terms in B which exist in C also exist in AD′.
Since all the terms in C exist in AD′ and all the terms in AD′ exist in C,

C can be derived just as AD′ is derived.
C can be derived such that each implication’s inputs contain at least one

given 3-terminal clause and at most one derived clause. We refer to the
derived clause in each step as the running clause.

Since each implication has at least one 3-terminal clause, the shortest pos-
sible output for the graph is a 2-terminal clause so there are now four branches
resulting in contradicting 2-terminal clauses rather than two branches result-
ing in contradicting 1-terminal clauses.

Limiting the max length

Claim: The implication graph centered around a running clause can be re-
arranged in such a way as to derive the final output contradicting 1-terminal
clauses by processing clauses with a maximum length of 4.

Proof. Recall the implication graph is composed of a running clause that is
used in conjunction with given 3-terminal clauses to imply a new running
clause.

At each step, the running clause loses a term and gains up to two terms.
One important note is that if the next running clause is shorter, then the

given 3-terminal clause input must have shared two terms with the previous
running clause.

Additionally, if the running clause is not shorter, then any newly intro-
duced term must be popped later in the implication graph.

Without loss of generality, consider the following description of the graph
at this point:

1. [a, b] is the final output
2. [a, b,−c] is the final given 3-terminal clause used in the graph

16



These are always true because [a, b] is the final output of the branch with
which we are concerned and there must be some term which is popped in the
very last step of this derivation. Let this term be c which is popped by the
clause, [a, b,−c].

It seems to make the most intuitive sense to start with the final clause
and move up the chain of clauses until we derive the final output [a, b].

We will use the principle of mathematical induction to derive the clause
[a, b,−i] (by processing clauses with a maximum length of 4) for every term,
i, which is introduced to the running clause.

Starting with [a, b,−c], we know the last running clause is [a, b, c] because
[a, b] is the final output and c must be popped by a 3-terminal clause.

Now consider the second to last clause. Let the second to last popped
term be d. The clause must have −d as well as two terms from the following
set: {a, b, c}. This is because, in order to be the second to last clause, it must
contain only the popped term as well as term(s) from the running clause (if
it contained anything else, it would require another step to pop the newly
introduced terms).

We want to derive the clause [a, b,−d].
There are three options for this second to last clause:
[a, b,−d], [a, c,−d], [b, c,−d].
In the first case, we already have [a, b,−d].
In the latter two cases, we know [a, b,−c] exists so we can pop c and

derive [a, b,−d].
In general, consider the clause [−x, y, z] where x is popped from the

running clause and y and z are in the running clause.
We want to derive [−x, a, b].
Since y and z are in the running clause, they must be a or b or popped

later.
In the case where y or z are a or b, clearly these terms are not popped

since they exist in the final output so disregard any reference to popping
these terms in the following steps. The terms a and b will overlap and the
resulting [−x, a, b] clause will be the same in all cases where y and z are
popped terms or they are a and/or b.

Consider y and z as popped terms, they must be popped later in the
implication graph and since we’re moving from last popped term to first
popped term, we have already derived [−y, a, b] and [−z, a, b].

Now we can pop y to derive [−x, z, a, b]
and we can pop z to derive [−x, a, b].

17



In this way, we can derive [−x, a, b] by processing clauses with a maximum
length of 4 for all x in which x is a popped term in the running clause.

Consider the part of the implication graph which introduces terms to be
popped. The first clause in this graph cannot pop any terms since there are
no terms in the running clause.

As such, all of the terms in the first clause are positive as they are intro-
duced for the first time.

Recall we have constructed a clause, [−x, a, b], for each term, x, which is
popped from the running clause.

As such, we can pop all the positive terms from this first clause and we
will be left with the clause [a, b].

It is shown we can derive the final output of the running clause based
implication graph, [a, b], by processing clauses with a maximum length of 4.

This can be done for each branch and the resulting contradicting 2-
terminal clauses can imply contradicting 1-terminal clauses.

Algorithm

This section reiterates the algorithm and proves its time complexity and
correctness.

The algorithm steps are outlined as follows:

1. For each clause in the instance, C:

(a) For each clause in the instance, D, which is not C:

i. If C and D are of length four or less and share an opposite
form term, add a new clause to the instance which consists
of each term from both clauses except for the opposite form
term.

2. For each clause in the instance, E, of length 1:

(a) For each clause in the instance, F , of length 1:

i. If E and F contain opposite form terms, the instance is un-
satisfiable.

3. Repeat steps 1. and 2. as long as at least one clause is added to the
instance

4. When no new clauses are added, the instance is satisfiable.

18



Time Complexity

Let n be the number of terminals in the instance. Since the instance only
contains clauses of up to length 4 and each clause contains either form of four
unique terminals, iterating the instance takes a maximum of

(
2n
4

)
+

(
2n
3

)
+(

2n
2

)
+

(
2n
1

)
steps, which is on the order of O(n4).

Steps 1. 1a. 2. and 2a. iterate through the instance so they are all on
the order of O(n4).

Step 1ai. is done in constant time since the length of the clauses have a
fixed maximum of 4 terms.

Step 2ai. is done in constant time since both clauses are of length 1.
Step 3. adds at least one clause to the instance so it is repeated at most

once per possible clause in the instance. There are
(
2n
4

)
+

(
2n
3

)
+

(
2n
2

)
+(

2n
1

)
possible clauses in the instance so this step is done on the order of O(n4)

times.
Step 4. is done in constant time with the use of a flag or similar technique.
Steps 1. and 1a.. repeat each time step 3. is done.
Similarly steps 2. and 2a. repeat each time step 3. is done.
The worst case time complexity for each of these nested steps is O(n8)

both of which are repeated O(n4) times by step 3.
This results in an overall time complexity of O(n12).

Proof of Correctness

This algorithm is correct under the following conditions: an instance is un-
satisfiable ⇐⇒ contradicting 1-terminal clauses can be derived using the
algorithm.

The algorithm works by using the methods of Implication and Reduction
which have been shown to only add clauses to the instance if those clauses
do not block any assignments which were not already blocked.

As such, if the algorithm derives contradicting 1-terminal clauses, then
all the assignments were already blocked and the instance was already un-
satisfiable.

It is also seen that an unsatisfiable instance implies the existence of an
initial implication graph in which the given 3-terminal clauses expand to
n-terminal clauses which then reduce to contradicting 1-terminal clauses.

19



This initial implication graph can be rearranged such that no expansion
step is necessary.

This expansionless implication graph can be rearranged again such that
each implication consists of at least one given 3-terminal clause and at most
one derived clause. The derived clause in each step is referred to as the
running clause.

This running clause based implication graph can then be rearranged such
that the contradicting 1-terminal clauses can be derived by processing only
clauses with a maximum length of 4.

Taking all these methods into consideration, it is seen that processing an
unsatisfiable instance using the idea of implication among clauses of length
4 or less results in the derivation of contradicting 1-terminal clauses.

Therefore, the algorithm derives contradicting 1-terminal clauses if and
only if the instance is unsatisfiable.

Since this algorithm is done in polynomial time, 3SAT ∈ P and P = NP.

References

[1] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, page 151–158, New York, NY, USA, 1971. Association
for Computing Machinery.

20


